标签地图 网站地图

AI绘画模型代码怎么写?

2025-06-07 10:03 阅读数 1407 #AI绘画
编写AI绘画模型代码通常涉及以下几个步骤:选择深度学习框架(如TensorFlow或PyTorch),准备数据集并进行预处理,设计神经网络架构(可能包括卷积层、池化层、全连接层等),定义损失函数和优化器,训练模型,并在训练过程中进行验证和调整,最后保存和加载模型进行绘画生成。

在探索如何编写AI绘画模型的代码时,我们首先需要理解这是一个涉及深度学习和计算机视觉的复杂任务,AI绘画,通常称为“神经风格迁移”或“深度艺术风格化”,是通过训练神经网络来将一种图像的风格应用到另一种图像的内容上,以下是一个简化的步骤指南和示例代码框架,帮助你入门。

环境准备

你需要一个支持深度学习的编程环境,Python是最常用的语言,而TensorFlow或PyTorch是常用的深度学习框架。

AI绘画模型代码怎么写?

# 安装必要的库
pip install tensorflow numpy pillow matplotlib

数据准备

你需要两组图像:一组是内容图像(你想要保留其内容的图像),另一组是风格图像(你想要应用其风格的图像)。

import numpy as np
from PIL import Image
import tensorflow as tf
# 加载图像并调整大小
def load_and_process_img(path_to_img):
    max_dim = 512
    img = Image.open(path_to_img).convert('RGB')
    long = max(img.size)
    scale = max_dim / long
    img = img.resize((int(img.width * scale), int(img.height * scale)), Image.ANTIALIAS)
    img = np.array(img)
    img = img.astype('float32')
    img = np.expand_dims(img, axis=0)
    return img
content_image_path = 'path_to_content_image.jpg'
style_image_path = 'path_to_style_image.jpg'
content_image = load_and_process_img(content_image_path)
style_image = load_and_process_img(style_image_path)

构建模型

你需要一个能够提取图像特征的卷积神经网络(CNN),如VGG19,你需要定义损失函数,包括内容损失和风格损失。

def get_model():
    vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
    vgg.trainable = False
    content_layers = ['block5_conv2'] 
    style_layers = [
        'block1_conv1',
        'block2_conv1',
        'block3_conv1', 
        'block4_conv1', 
        'block5_conv1'
    ]
    selected_layers = content_layers + style_layers
    outputs = [vgg.get_layer(name).output for name in selected_layers]
    model = tf.keras.models.Model([vgg.input], outputs)
    return model, content_layers, style_layers
model, content_layers, style_layers = get_model()

定义损失函数和优化器

你需要计算内容损失和风格损失,并定义一个优化器来最小化这些损失。

def content_loss(base_content, target):
    return tf.reduce_mean(tf.square(base_content - target))
def gram_matrix(input_tensor):
    result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor, input_tensor)
    input_shape = tf.shape(input_tensor)
    num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)
    return result / num_locations
def style_loss(base_style, gram_target):
    height, width, channels = base_style.get_shape().as_list()
    gram_style = gram_matrix(base_style)
    return tf.reduce_mean(tf.square(gram_style - gram_target))
def total_loss(model, loss_weights, init_image, gram_style_features, content_features):
    model_outputs = model(init_image)
    style_output_features = model_outputs[len(content_layers):]
    content_output_features = model_outputs[:len(content_layers)]
    style_score = 0
    content_score = 0
    weight_content, weight_style = loss_weights
    for target_style, comb_style in zip(gram_style_features, style_output_features):
        style_score += style_loss(comb_style[0], target_style)
    for target_content, comb_content in zip(content_features, content_output_features):
        content_score += content_loss(comb_content[0], target_content)
    style_score *= weight_style / len(style_layers)
    content_score *= weight_content
    loss = style_score + content_score
    return loss
def compute_grads(cfg):
    with tf.GradientTape() as tape:
        all_loss = total_loss(**cfg)
    total_loss_value = all_loss[0]
    return tape.gradient(total_loss_value, cfg['init_image']), all_loss

运行优化

你需要运行一个优化循环来更新初始图像,使其逐渐接近目标风格和内容。

import time
import numpy as np
def run_style_transfer(content_path, style_path, num_iterations=1000,
                       content_weight=1e3, style_weight=1e-2):
    # 加载和预处理图像
    content_image = load_and_process_img(content_path)
    style_image = load_and_process_img(style_path)
    # 提取特征
    style_outputs = model(style_image)
    content_outputs = model(content_image)
    style_features = [style_layer[0] for style_layer in style_outputs[len(content_layers):]]
    content_features = [content_layer[0] for content_layer in content_outputs[:len(content_layers)]]
    gram_style_features = [gram_matrix(style_feature) for style_feature in style_features]
    # 初始化图像
    init_image = load_and_process_img(content_path)
    init_image = tf.Variable(init_image, dtype=tf.float32)
    # 设置优化器
    opt = tf.compat.v1.train.AdamOptimizer(learning_rate=5, beta1=0.99, epsilon=1e-1)
    # 配置
    best_loss, best_img = float('inf'), None
    loss_weights = (content_weight, style_weight)
    cfg = {
        'model': model,
        'loss_weights': loss_weights,
        'init_image': init_image,
        'gram_style_features': gram_style_features,
        'content_features': content_features
    }
    norm_means = np.array([103.939, 116.779, 123.68])
    min_vals = -norm_means
    max_vals = 255 - norm_means    
    imgs = []
    for i in range(num_iterations):
        grads, all_loss = compute_grads(cfg)
        loss, style_score, content_score = all_loss
        opt.apply_gradients([(grads, init_image)])
        clipped = tf.clip_by_value(init_image, min_vals, max_vals)
        init_image.assign(clipped)
        end_time = time.time()
        if loss < best_loss:
            best_loss = loss
            best_img = deprocess_img(init_image.numpy())
        if i % 50 == 0:
            print('Iteration: {}'.format(i))        
            print('Total loss: {:.4e}, style loss: {:.4e}, content loss: {:.4e}, time: {:.4f}s'.format(loss, style_score, content_score, time.time() - end_time))
        # 保存生成的图像
        plot_img = init_image.numpy()
        plot_img = plot_img.reshape((plot_img.shape[1], plot_img.shape[2], plot_img.shape[3]))
        plot_img = deprocess_img(plot_img)
        imgs.append(plot_img)
    return best_img, imgs
best, imgs = run_style_transfer(content_image_path, style_image_path
评论列表
  •   枫尘于往逝  发布于 2025-06-07 10:15:36
    AI绘画模型代码的编写,需精通编程语言如Python及深度学习框架(例如TensorFlow或PyTorch),同时要求对图像处理、神经网络架构有深刻理解,良好的数学基础和创意也是不可或缺的因素。
  •   打小是祖宗  发布于 2025-06-16 23:25:36
    AI绘画模型代码需结合深度学习框架,如TensorFlow或PyTorch编写, 实现图像生成与风格迁移。